Characterization of the torsion of the Jacobian of y² = x⁵+Ax and some applications
Consider the families of curves and where A is a nonzero rational. Let and denote their respective Jacobian varieties. The torsion points of and are well known. We show that for any nonzero rational A the torsion subgroup of is a 2-group, and for A ≠ 4a⁴,-1728,-1259712 this subgroup is equal to (for a excluded values of A, with the possible exception of A = -1728, this group has a point of order 4). This is a variant of the corresponding results for (A ≠ 4) and . We also almost...
Soient une variété abélienne sur un corps de nombres et son groupe de Mumford–Tate. Soit une valuation de et pour tout nombre premier tel que , soit l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de . On montre que si a une bonne réduction ordinaire en , alors il existe tel que, pour tout , soit conjugué à dans . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de modulo .
Let be a family of Mumford-type, that is, a family of polarized complex abelian fourfolds as introduced by Mumford in [9]. This family is defined starting from a quaternion algebra over a real cubic number field and imposing a condition to the corestriction of such . In this paper, under some extra conditions on the algebra , we make this condition explicit and in this way we are able to describe the polarization and the complex structures of the fibers. Then, we look at the non simple -fibers...