A quantum field theoretical representation of Euler-Zagier sums.
An explicit formula for the Mahler measure of the -variable Laurent polynomial is given, in terms of dilogarithms and trilogarithms.
This is an expository article, based on the talk with the same title, given at the 2011 FASDE II Conference in Będlewo, Poland. In the introduction we define Multiple Zeta Values and certain historical remarks are given. Then we present several results on Multiple Zeta Values and, in particular, we introduce certain meromorphic differential equations associated to their generating function. Finally, we make some conclusive remarks on generalisations of Multiple Zeta Values as well as the meromorphic...
We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of -functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.
Nous exprimons certaines séries d’Epstein normalisées en comme combinaisons linéaires de dilogarithmes de Bloch-Wigner en des nombres algébriques des corps pour les discriminants associés à la forme quadratique.
Some general construction of linear forms with rational coefficients in values of Riemann zeta-function at integer points is presented. These linear forms are expressed in terms of complex integrals of Barnes type that allows to estimate them. Some identity connecting these integrals and multiple integrals on the real unit cube is proved.
Les valeurs aux entiers pairs (strictement positifs) de la fonction de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de . En revanche, on sait très peu de choses sur la nature arithmétique des , pour entier. Apéry a démontré en 1978 que est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de sont irrationnels, mais sans pouvoir en exhiber aucun autre que . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...