The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

Zéro-cycles de degré 1 sur les solides de Poonen

Jean-Louis Colliot-Thélène (2010)

Bulletin de la Société Mathématique de France

B. Poonen a récemment exhibé des exemples de variétés projectives et lisses de dimension 3 sur un corps de nombres qui n’ont pas de point rationnel et pour lesquelles il n’y a pas d’obstruction de Brauer–Manin après revêtement fini étale. Je montre que les variétés qu’il construit possèdent des zéro-cycles de degré 1.

Zhang-Zagier heights of perturbed polynomials

Christophe Doche (2001)

Journal de théorie des nombres de Bordeaux

In a previous article we studied the spectrum of the Zhang-Zagier height [2]. The progress we made stood on an algorithm that produced polynomials with a small height. In this paper we describe a new algorithm that provides even smaller heights. It allows us to find a limit point less than 1 . 289735 i.e. better than the previous one, namely 1 . 2916674 . After some definitions we detail the principle of the algorithm, the results it gives and the construction that leads to this new limit point.

Currently displaying 1 – 11 of 11

Page 1