Displaying 141 – 160 of 197

Showing per page

The strongly perfect lattices of dimension 10

Gabriele Nebe, Boris Venkov (2000)

Journal de théorie des nombres de Bordeaux

This paper classifies the strongly perfect lattices in dimension 10 . There are up to similarity two such lattices, K 10 ' and its dual lattice.

Théorie de Voronoï géométrique. Propriétés de finitude pour les familles de réseaux et analogues

Christophe Bavard (2005)

Bulletin de la Société Mathématique de France

Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).

Unités d’une famille de corps liés à la courbe X 1 ( 25 )

Odile Lecacheux (1990)

Annales de l'institut Fourier

On étudie une famille de corps réels cycliques de degré 10 liés à la courbe modulaire X 1 ( 25 ) . Les unités modulaires déterminent un sous-groupe d’unités d’indice fini. Sous certaines conditions, cet indice est égal à 1 ou 5.

Currently displaying 141 – 160 of 197