Displaying 41 – 60 of 343

Showing per page

Density of some sequences modulo 1

Artūras Dubickas (2012)

Colloquium Mathematicae

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a / n n = 1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length c N - 0 . 475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Discrépance de la suite ( { n α } ) , α = ( 1 + 5 ) / 2

Yves Dupain (1979)

Annales de l'institut Fourier

Soit D * ( N ) la discrépance “à l’origine” de la suite n 1 + 5 2 . Nous montrons que lim sup D * ( N ) Log N = 3 20 Log 1 + 5 2 - 1 = 0 . 31 , quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.

Currently displaying 41 – 60 of 343