Das Gesetz vom iterierten Logarithmus mit Anwendungen auf die Zahlentheorie.
Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.
Soit la discrépance “à l’origine” de la suite . Nous montrons que , quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.