Displaying 21 – 40 of 1160

Showing per page

A generalization of a theorem of Erdős-Rényi to m-fold sums and differences

Kathryn E. Hare, Shuntaro Yamagishi (2014)

Acta Arithmetica

Let m ≥ 2 be a positive integer. Given a set E(ω) ⊆ ℕ we define r N ( m ) ( ω ) to be the number of ways to represent N ∈ ℤ as a combination of sums and differences of m distinct elements of E(ω). In this paper, we prove the existence of a “thick” set E(ω) and a positive constant K such that r N ( m ) ( ω ) < K for all N ∈ ℤ. This is a generalization of a known theorem by Erdős and Rényi. We also apply our results to harmonic analysis, where we prove the existence of certain thin sets.

A generalization of NUT digital (0,1)-sequences and best possible lower bounds for star discrepancy

Henri Faure, Friedrich Pillichshammer (2013)

Acta Arithmetica

In uniform distribution theory, discrepancy is a quantitative measure for the irregularity of distribution of a sequence modulo one. At the moment the concept of digital (t,s)-sequences as introduced by Niederreiter provides the most powerful constructions of s-dimensional sequences with low discrepancy. In one dimension, recently Faure proved exact formulas for different notions of discrepancy for the subclass of NUT digital (0,1)-sequences. It is the aim of this paper to generalize the concept...

Currently displaying 21 – 40 of 1160