Od funkcí periodických ke skoroperiodickým
Page 1 Next
Alexandr Fischer (2000)
Pokroky matematiky, fyziky a astronomie
Peter J. Grabner, Pierre Liardet, Robert F. Tichy (1995)
Acta Arithmetica
Hendrik Gerrit Meijer, Tibor Šalát (1977)
Časopis pro pěstování matematiky
Štefan Porubský, Tibor Šalát, Oto Strauch (1990)
Mathematica Slovaca
J.P. Troallic, G. Hansel (1990)
Semigroup forum
Iurie Boreico, Daniel El-Baz, Thomas Stoll (2014)
Journal de Théorie des Nombres de Bordeaux
Let and denote by the sum-of-digits function in base . For considerIn 1983, F. M. Dekking conjectured that this quantity is greater than and, respectively, less than for infinitely many , thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.
P. D. T. A. Elliott (1976)
Colloquium Mathematicae
H. G. Meijer, H. Niederreiter (1972)
Compositio Mathematica
Jeffrey J. Holt (1996)
Acta Arithmetica
Ganatsiou, C. (2000)
International Journal of Mathematics and Mathematical Sciences
V. Bernik (1996)
Acta Arithmetica
Pelegrí Viader, Lluís Bibiloni, Jaume Paradís (1999)
Acta Arithmetica
József Beck (1987)
Mathematische Annalen
J. Beck (1983)
Inventiones mathematicae
Alan Zame (1972)
Colloquium Mathematicae
R. Nair (2003)
Acta Arithmetica
Wentang Kuo, Shuntaro Yamagishi (2016)
Acta Arithmetica
Let ω be a sequence of positive integers. Given a positive integer n, we define rₙ(ω) = |(a,b) ∈ ℕ × ℕ : a,b ∈ ω, a+b = n, 0 < a < b|. S. Sidon conjectured that there exists a sequence ω such that rₙ(ω) > 0 for all n sufficiently large and, for all ϵ > 0, . P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that log n ≪ rₙ(ω) ≪ log n. In this paper, we prove an analogue of this conjecture in , where is a finite field of q elements....
P. Erdös, M. Joó, I. Joó (1992)
Bulletin de la Société Mathématique de France
József Beck (1989)
Mathematische Annalen
R. Stoneham (1983)
Acta Arithmetica
Page 1 Next