Page 1

Displaying 1 – 10 of 10

Showing per page

Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow

Luca Marchese (2012)

Bulletin de la Société Mathématique de France

We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition. We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.

Khintchine types of translated coordinate hyperplanes

Felipe A. Ramírez (2015)

Acta Arithmetica

There has been great interest in developing a theory of "Khintchine types" for manifolds embedded in Euclidean space, and considerable progress has been made for curved manifolds. We treat the case of translates of coordinate hyperplanes, decidedly flat manifolds. In our main results, we fix the value of one coordinate in Euclidean space and describe the set of points in the fiber over that fixed coordinate that are rationally approximable at a given rate. We identify translated coordinate hyperplanes...

Kloosterman sums in residue classes

Valentin Blomer, Djordje Milićević (2015)

Journal of the European Mathematical Society

We prove upper bounds for sums of Kloosterman sums against general arithmetic weight functions. In particular, we obtain power cancellation in sums of Kloosterman sums over arithmetic progressions, which is of square-root strength in any fixed primitive congruence class up to bounds towards the Ramanujan conjecture.

Currently displaying 1 – 10 of 10

Page 1