Ramanujan expansions of multiplicative functions
Page 1 Next
Richard Warlimont (1983)
Acta Arithmetica
P. Erdös, M. Kac, E. van Kampen, A. Wintner (1940)
Studia Mathematica
H. Gopalakrishna Gadiyar, Ramanathan Padma (2014)
Czechoslovak Mathematical Journal
We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility...
Sburlati, G. (2002)
Rendiconti del Seminario Matematico
Bailey, David H., Crandall, Richard E. (2002)
Experimental Mathematics
Zhuravlev, V.G. (2005)
Journal of Mathematical Sciences (New York)
M. Reversat (1974/1975)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
M. Deleglise (1991)
Acta Arithmetica
Rita Giuliano Antonini, Georges Grekos (2005)
Colloquium Mathematicae
We give an extension of Benford's law (first digit problem) by using the concept of conditional density, introduced by Fuchs and Letta. The main tool is the notion of regular subset of integers.
Pierre Liardet (1987)
Compositio Mathematica
Johannes Schoissengeier (2008)
Acta Arithmetica
Peter Gerl (1971)
Monatshefte für Mathematik
P. Szüsz (1974)
Acta Arithmetica
Michael S. Waterman (1975)
Monatshefte für Mathematik
Vladimír Baláž, Oto Strauch, Tibor Šalát (2006)
Acta Mathematica Universitatis Ostraviensis
In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, -convergence, -convergence, almost convergence, strong -Cesàro convergence and uniformly strong -Cesàro convergence.
Peter J. Grabner, Robert Franz Tichy (1994)
Mathematica Slovaca
Tibor Šalát (2000)
Czechoslovak Mathematical Journal
This paper is closely related to an earlier paper of the author and W. Narkiewicz (cf. [7]) and to some papers concerning ratio sets of positive integers (cf. [4], [5], [12], [13], [14]). The paper contains some new results completing results of the mentioned papers. Among other things a characterization of the Steinhaus property of sets of positive integers is given here by using the concept of ratio sets of positive integers.
Tibor Šalát (1967)
Matematický časopis
József Bukor, Pál Erdös, Tibor Šalát, János T. Tóth (1997)
Mathematica Slovaca
Wolfgang Schwarz (1985)
Banach Center Publications
Page 1 Next