Limit theorems for lacunary series and uniform distribution mod 1
In this paper two weighted functional limit theorems for the function introduced by K. Matsumoto are proved.
We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N−1/2∑n=0N'−1exp(πin2α), 0≤N'<N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J.97 (1999) 127–153] and Jurkat and van Horne [Duke...
Soit un sous-intervalle de ; on montre que la probabilité pour qu’un diviseur d’un entier appartiennent à possède une loi de distribution dont la mesure de répartition est atomique, à support inclus dans l’ensemble des nombres dyadiques.
We prove several results concerning the existence of low-discrepancy point sets with respect to an arbitrary non-uniform measure μ on the d-dimensional unit cube. We improve a theorem of Beck, by showing that for any d ≥ 1, N ≥ 1, and any non-negative, normalized Borel measure μ on there exists a point set whose star-discrepancy with respect to μ is of order . For the proof we use a theorem of Banaszczyk concerning the balancing of vectors, which implies an upper bound for the linear discrepancy...