Displaying 61 – 80 of 169

Showing per page

Nonlinear exponential twists of the Liouville function

Qingfeng Sun (2011)

Open Mathematics

Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum X n 2 X λ ( n ) e 2 π i α n , 0 α The main tool we use is Vaughan’s identity for λ(n).

On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions

Manfred Kühleitner, Werner Nowak (2013)

Open Mathematics

The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.

On a sum involving the integral part function

Bo Chen (2024)

Czechoslovak Mathematical Journal

Let [ t ] be the integral part of a real number t , and let f be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum S f ( x ) = n x f ( [ x / n ] ) , which improves the recent result of J. Stucky (2022).

On certain arithmetic functions involving the greatest common divisor

Ekkehard Krätzel, Werner Nowak, László Tóth (2012)

Open Mathematics

The paper deals with asymptotics for a class of arithmetic functions which describe the value distribution of the greatest-common-divisor function. Typically, they are generated by a Dirichlet series whose analytic behavior is determined by the factor ζ2(s)ζ(2s − 1). Furthermore, multivariate generalizations are considered.

On k -free numbers over Beatty sequences

Wei Zhang (2023)

Czechoslovak Mathematical Journal

We consider k -free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number α > 1 of finite type τ < and any constant ε > 0 , we can show that 1 n x [ α n + β ] 𝒬 k 1 - x ζ ( k ) x k / ( 2 k - 1 ) + ε + x 1 - 1 / ( τ + 1 ) + ε , where 𝒬 k is the set of positive k -free integers and the implied constant depends only on α , ε , k ...

Currently displaying 61 – 80 of 169