Previous Page 3

Displaying 41 – 55 of 55

Showing per page

The ternary Goldbach problem in arithmetic progressions

Jianya Liu, Tao Zhan (1997)

Acta Arithmetica

For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and ( N , r ) = b ³ : 1 b j r , ( b j , r ) = 1 a n d b + b + b N ( m o d r ) . It is known that    ( N , r ) = r ² p | r p | N ( ( p - 1 ) ( p - 2 ) / p ² ) p | r p N ( ( p ² - 3 p + 3 ) / p ² ) . Let ε > 0 be arbitrary and R = N 1 / 8 - ε . We prove that for all positive integers r ≤ R, with at most O ( R l o g - A N ) exceptions, the Diophantine equation ⎧N = p₁+p₂+p₃, ⎨ p j b j ( m o d r ) , j = 1,2,3, ⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.

Three two-dimensional Weyl steps in the circle problem I. The Hessian determinant

Ulrike M. A. Vorhauer, Eduard Wirsing (1999)

Acta Arithmetica

1. Summary. In a sequence of three papers we study the circle problem and its generalization involving the logarithmic mean. Most of the deeper results in this area depend on estimates of exponential sums. For the circle problem itself Chen has carried out such estimates using three two-dimensional Weyl steps with complicated techniques. We make the same Weyl steps but our approach is simpler and clearer. Crucial is a good understanding of the Hessian determinant that appears and a simple...

Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions

Ulrike M. A. Vorhauer (1999)

Acta Arithmetica

1. Summary. In Part II we study arithmetic functions whose Dirichlet series satisfy a rather general type of functional equation. For the logarithmic Riesz mean of these functions we give a representation involving finite trigonometric sums. An essential tool here is the saddle point method. Estimation of the exponential sums in the special case of the circle problem will be the topic of Part III.

Trigonometric sums over primes III

Glyn Harman (2003)

Journal de théorie des nombres de Bordeaux

New bounds are given for the exponential sum P p < 2 P e ( α p k ) were k 5 , p denotes a prime and e ( x ) = exp ( 2 π i x ) .

Twists and resonance of L -functions, I

Jerzy Kaczorowski, Alberto Perelli (2016)

Journal of the European Mathematical Society

We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents 1 / d of the L -functions of any degree d 1 in the extended Selberg class. In particular, this solves the resonance problem in all such cases.

Two identities related to Dirichlet character of polynomials

Weili Yao, Wenpeng Zhang (2013)

Czechoslovak Mathematical Journal

Let q be a positive integer, χ denote any Dirichlet character mod q . For any integer m with ( m , q ) = 1 , we define a sum C ( χ , k , m ; q ) analogous to high-dimensional Kloosterman sums as follows: C ( χ , k , m ; q ) = a 1 = 1 q ' a 2 = 1 q ' a k = 1 q ' χ ( a 1 + a 2 + + a k + m a 1 a 2 a k ¯ ) , where a · a ¯ 1 mod q . The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value | C ( χ , k , m ; q ) | , and give two interesting identities for it.

Currently displaying 41 – 55 of 55

Previous Page 3