On Squarefree Numbers in Arithmetic Progressions.
A positive integer is called a square-free number if it is not divisible by a perfect square except . Let be an odd prime. For with , the smallest positive integer such that is called the exponent of modulo . If the exponent of modulo is , then is called a primitive root mod . Let be the characteristic function of the square-free primitive roots modulo . In this paper we study the distribution and give an asymptotic formula by using properties of character sums.
We give asymptotic formulas for some average values of the Euler function on shifted smooth numbers. The result is based on various estimates on the distribution of smooth numbers in arithmetic progressions which are due to A. Granville and É. Fouvry & G. Tenenbaum.