Displaying 41 – 60 of 65

Showing per page

On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang (2023)

Czechoslovak Mathematical Journal

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

On the Euler Function on Differences Between the Coordinates of Points on Modular Hyperbolas

Igor E. Shparlinski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola a , p ( X , Y ) = ( x , y ) : x y a ( m o d p ) , 1 x X , 1 y Y . We give asymptotic formulas for the average values ( x , y ) a , p ( X , Y ) x y * φ ( | x - y | ) / | x - y | and ( x , y ) a , p ( X , X ) x y * φ ( | x - y | ) with the Euler function φ(k) on the differences between the components of points of a , p ( X , Y ) .

On the parity of generalized partition functions, III

Fethi Ben Saïd, Jean-Louis Nicolas, Ahlem Zekraoui (2010)

Journal de Théorie des Nombres de Bordeaux

Improving on some results of J.-L. Nicolas [15], the elements of the set 𝒜 = 𝒜 ( 1 + z + z 3 + z 4 + z 5 ) , for which the partition function p ( 𝒜 , n ) (i.e. the number of partitions of n with parts in 𝒜 ) is even for all n 6 are determined. An asymptotic estimate to the counting function of this set is also given.

On the powerful part of n 2 + 1

Jan-Christoph Puchta (2003)

Archivum Mathematicum

We show that n 2 + 1 is powerfull for O ( x 2 / 5 + ϵ ) integers n x at most, thus answering a question of P. Ribenboim.

Currently displaying 41 – 60 of 65