Displaying 21 – 40 of 59

Showing per page

Growth of the product j = 1 n ( 1 - x a j )

J. P. Bell, P. B. Borwein, L. B. Richmond (1998)

Acta Arithmetica

We estimate the maximum of j = 1 n | 1 - x a j | on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when a j is j k or when a j is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when a j is j.    In contrast we show, under fairly general conditions, that the maximum is less than 2 n / n r , where r is an arbitrary positive number. One consequence is that the...

Mock modular forms and singular combinatorial series

Amanda Folsom, Susie Kimport (2013)

Acta Arithmetica

A celebrated result of Bringmann and Ono shows that the combinatorial rank generating function exhibits automorphic properties after being completed by the addition of a non-holomorphic integral. Since then, automorphic properties of various related combinatorial families have been studied. Here, extending work of Andrews and Bringmann, we study general infinite families of combinatorial q-series pertaining to k-marked Durfee symbols, in which we allow additional singularities. We show that these...

On partitions without small parts

J.-L. Nicolas, A. Sárközy (2000)

Journal de théorie des nombres de Bordeaux

Let r ( n , m ) denote the number of partitions of n into parts, each of which is at least m . By applying the saddle point method to the generating series, an asymptotic estimate is given for r ( n , m ) , which holds for n , and 1 m c 1 n log n c 2 .

On the number of prime factors of summands of partitions

Cécile Dartyge, András Sárközy, Mihály Szalay (2006)

Journal de Théorie des Nombres de Bordeaux

We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.

On the positivity of the number of t-core partitions

Ken Ono (1994)

Acta Arithmetica

A partition of a positive integer n is a nonincreasing sequence of positive integers with sum n . Here we define a special class of partitions. 1. Let t 1 be a positive integer. Any partition of n whose Ferrers graph have no hook numbers divisible by t is known as a t- core partitionof n . The hooks are important in the representation theory of finite symmetric groups and the theory of cranks associated with Ramanujan’s congruences for the ordinary partition function [3, 4, 6]. If t 1 and n 0 , then we define...

On the power-series expansion of a rational function

D. V. Lee (1992)

Acta Arithmetica

Introduction. The problem of determining the formula for P S ( n ) , the number of partitions of an integer into elements of a finite set S, that is, the number of solutions in non-negative integers, h s , . . . , h s k , of the equation hs₁ s₁ + ... + hsk sk = n, was solved in the nineteenth century (see Sylvester [4] and Glaisher [3] for detailed accounts). The solution is the coefficient of x i n [(1-xs₁)... (1-xsk)]-1, expressions for which they derived. Wright [5] indicated a simpler method by which to find part of the solution...

Partitions sans petites parts

Elie Mosaki, Jean-Louis Nicolas, András Sárkőzy (2004)

Journal de Théorie des Nombres de Bordeaux

On désigne par r ( n , m ) le nombre de partitions de l’entier n en parts supérieures ou égales à m . En partant de l’estimation asymptotique de r ( n , m ) exprimée à l’aide d’un paramètre σ défini implicitement en fonction de n et m , nous éliminons ce paramètre en utilisant la formule sommatoire d’Euler-Maclaurin, pour obtenir un développement asymptotique de r ( n , m ) valable pour n + , et 1 m Γ n , Γ étant un réel quelconque.

Partitions sans petites parts (II)

Élie Mosaki (2008)

Journal de Théorie des Nombres de Bordeaux

On désigne par r ( n , m ) le nombre de partitions de l’entier n en parts supérieures ou égales à m , et R ( n , m ) = r ( n - m , m ) le nombre de partitions de n de plus petite part m . Dans un précédent article (voir [9]) un développement asymptotique de r ( n , m ) est obtenu uniformément pour 1 m = O ( n )  ; on complète ce développement uniformément pour 1 m = ( n log - 3 n ) . Afin de prolonger les résultats jusqu’à m n , on donne un encadrement de r ( n , m ) valable pour n 2 / 3 m n en utilisant la relation r ( n , m ) = t = 1 n / m P ( n - ( m - 1 ) t , t ) P ( i , t ) désigne le nombre de partitions de i en exactement t parts. On donne aussi une...

Currently displaying 21 – 40 of 59