The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a quadratic imaginary number field of discriminant . For let denote the order of conductor in and its modular invariant which is known to generate the ring class field modulo over . The coefficients of the minimal equation of being quite large Weber considered in [We] the functions defined below and thereby obtained simpler generators of the ring class fields. Later on the singular values of these functions played a crucial role in Heegner’s solution [He] of the class...
Let K be a number field. Assume that the 2-rank of the ideal class group of K is equal to the 2-rank of the narrow ideal class group of K. Moreover, assume K has a unique dyadic prime and the class of is a square in the ideal class group of K. We prove that if ₁,...,ₙ are finite primes of K such that
∙ the class of is a square in the ideal class group of K for every i ∈ 1,...,n,
∙ -1 is a local square at for every nondyadic ,
then ₁,...,ₙ is the wild set of some self-equivalence of the field...
Currently displaying 1 –
3 of
3