On the 4-rank of ideal class groups of quadratic function fields
If l is a prime number, the cyclotomic elements in the l-torsion of K₂(k(x)), where k(x) is the rational function field over k, are investigated. As a consequence, a conjecture of Browkin is partially confirmed.
The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials m such that the maximal real subfield of the mth cyclotomic function field is ordinary. In this paper, we extend this result to the general case.
Let be the rational function field over a finite field of elements. For any polynomial with positive degree, denote by the torsion points of the Carlitz module for the polynomial ring . In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield of the cyclotomic function field of degree over , where is an irreducible polynomial of positive degree and is a positive divisor of . A formula for the analytic class number for the...