-adic representations of a local field. (Représentations -adiques d'un corps local.)
Le but de cette note est de donner une démonstration complète du théorème 4.1 de [5] qui a pour objet d’expliciter l’action de l’inertie modérée sur la semi-simplifiée modulo d’une certaine famille (assez restreinte) de représentations cristallines du groupe de Galois absolu d’un corps -adique . Lorsque n’est pas absolument ramifié, le calcul de cette action a déjà été accompli par Fontaine et Laffaille qui ont montré qu’elle est entièrement déterminée par les poids de Hodge-Tate de , au...
We show that for a local, discretely valued field , with residue characteristic , and a variety over , the map to the outer automorphisms of the prime to geometric étale fundamental group of maps the wild inertia onto a finite image. We show that under favourable conditions depends only on the reduction of modulo a power of the maximal ideal of . The proofs make use of the theory of logarithmic schemes.