Neubegründung der Klassenkörpertheorie.
Which invariants of a Galois -extension of local number fields (residue field of char , and Galois group ) determine the structure of the ideals in as modules over the group ring , the -adic integers? We consider this question within the context of elementary abelian extensions, though we also briefly consider cyclic extensions. For elementary abelian groups , we propose and study a new group (within the group ring where is the residue field) and its resulting ramification filtrations....
Let K be a non-archimedean valued field which contains Qp and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn|n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq → K) is the Banach space of continuous functions from Vq to K, equipped with the supremum norm. Our aim is to find normal bases (rn(x)) for C(Vq → K), where rn(x) does not have to be a polynomial.