-Genocchi numbers and polynomials associated with fermionic -adic invariant integrals on .
Page 1
Jang, Leechae, Kim, Taekyun (2008)
Abstract and Applied Analysis
Simsek, Yilmaz, Cangül, Ismail Naci, Kurt, Veli, Kim, Daeyeoul (2008)
Advances in Difference Equations [electronic only]
Kim, Taekyun (2004)
International Journal of Mathematics and Mathematical Sciences
Repka, Joe (1988)
International Journal of Mathematics and Mathematical Sciences
Shai Haran (1993)
Annales de l'institut Fourier
We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the -adic numbers. We apply this theory to the study of elliptic operators over the -adic numbers and determine their asymptotic spectral behavior.
Xavier Caruso, Tong Liu (2009)
Bulletin de la Société Mathématique de France
Fix a -adic field and denote by its absolute Galois group. Let be the extension of obtained by adding -th roots of a fixed uniformizer, and its absolute Galois group. In this article, we define a class of -adic torsion representations of , calledquasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient...
Peter Schmid (2014)
Acta Arithmetica
In any normal number field having Q₈, the quaternion group of order 8, as Galois group over the rationals, at least two finite primes must ramify. The classical example by Dedekind of such a field is extraordinary in that it is totally real and only the primes 2 and 3 are ramified. In this note we describe in detail all Q₈-fields over the rationals where only two (finite) primes are ramified. We also show that, for any integer n>3 and any prime , there exist unique real and complex normal number...
Jean-Pierre Serre (1981)
Publications Mathématiques de l'IHÉS
Chandan Singh Dalawat (2012)
Bulletin de la Société Mathématique de France
Pour un corps local à corps résiduel fini de caractéristique , nous donnons quelques raffinements de la formule de masse de Serre en degré qui nous permettent de calculer par exemple la contribution des extensions cycliques, ou celles dont la clôture galoisienne a pour groupe d’automorphismes un groupe donné à l’avance, ou possède des propriétés de ramification également données à l’avance.
Page 1