Page 1

Displaying 1 – 16 of 16

Showing per page

Haar wavelets on the Lebesgue spaces of local fields of positive characteristic

Biswaranjan Behera (2014)

Colloquium Mathematicae

We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for L p ( K ) , 1 < p < ∞. We also prove that this system, normalized in L p ( K ) , is a democratic basis of L p ( K ) . This also proves that the Haar system is a greedy basis of L p ( K ) for 1 < p < ∞.

Heights and totally p-adic numbers

Lukas Pottmeyer (2015)

Acta Arithmetica

We study the behavior of canonical height functions h ̂ f , associated to rational maps f, on totally p-adic fields. In particular, we prove that there is a gap between zero and the next smallest value of h ̂ f on the maximal totally p-adic field if the map f has at least one periodic point not contained in this field. As an application we prove that there is no infinite subset X in the compositum of all number fields of degree at most d such that f(X) = X for some non-linear polynomial f. This answers a...

Henselian Discrete Valued Fields Admitting One-Dimensional Local Class Field Theory

Chipchakov, I. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.This paper gives a characterization of Henselian discrete valued fields whose finite abelian extensions are uniquely determined by their norm groups and related essentially in the same way as in the classical local class field theory. It determines the structure of the Brauer groups and character groups of Henselian discrete valued strictly primary quasilocal (or PQL-) fields, and thereby, describes the forms of the local reciprocity...

Hermitian and quadratic forms over local classical crossed product orders

Y. Hatzaras, Th. Theohari-Apostolidi (2000)

Colloquium Mathematicae

Let R be a complete discrete valuation ring with quotient field K, L/K be a Galois extension with Galois group G and S be the integral closure of R in L. If a is a factor set of G with values in the group of units of S, then (L/K,a) (resp. Λ =(S/R,a)) denotes the crossed product K-algebra (resp. crossed product R -order in A). In this paper hermitian and quadratic forms on Λ -lattices are studied and the existence of at most two irreducible non-singular quadratic Λ -lattices is proved (Theorem 3.5)....

Hida families, p -adic heights, and derivatives

Trevor Arnold (2010)

Annales de l’institut Fourier

This paper concerns the arithmetic of certain p -adic families of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-theoretic aspects of the three items in the title of this paper. In particular, we examine several conjectures, three of which assert the non-triviality of an Euler system, a p -adic regulator, and the derivative of a p -adic L -function. We investigate sufficient conditions for the first conjecture to hold and show that, under additional assumptions, the first...

Hodge-Tate and de Rham representations in the imperfect residue field case

Kazuma Morita (2010)

Annales scientifiques de l'École Normale Supérieure

Let K be a p -adic local field with residue field k such that [ k : k p ] = p e &lt; + and V be a p -adic representation of Gal ( K ¯ / K ) . Then, by using the theory of p -adic differential modules, we show that V is a Hodge-Tate (resp. de Rham) representation of Gal ( K ¯ / K ) if and only if V is a Hodge-Tate (resp. de Rham) representation of Gal ( K pf ¯ / K pf ) where K pf / K is a certain p -adic local field with residue field the smallest perfect field k pf containing k .

Currently displaying 1 – 16 of 16

Page 1