Displaying 301 – 320 of 497

Showing per page

Operations of Points on Elliptic Curve in Projective Coordinates

Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama (2012)

Formalized Mathematics

In this article, we formalize operations of points on an elliptic curve over GF(p). Elliptic curve cryptography [7], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security. We prove that the two operations of points: compellProjCo and addellProjCo are unary and binary operations of a point over the elliptic curve.

Periodic harmonic functions on lattices and points count in positive characteristic

Mikhail Zaidenberg (2009)

Open Mathematics

This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.

Poids des duaux des codes BCH de distance prescrite 2 a + 1 et sommes exponentielles

Éric Férard (2002)

Bulletin de la Société Mathématique de France

Soit n un entier pair. On considère un code BCH binaire C n de longueur 2 n - 1 et de distance prescrite 2 a + 1 avec a 3 . Le poids d’un mot non nul du dual de  C n peut s’exprimer en fonction d’une somme exponentielle. Nous montrerons que cette somme n’atteint pas la borne de Weil et nous proposerons une amélioration de celle-ci. En conséquence, nous obtiendrons une amélioration de la borne de Carlitz-Uchiyama sur le poids des mots du dual de C n .

Currently displaying 301 – 320 of 497