Sur la décomposition de certains idéaux premiers
En utilisant le théorème de Christol, Kamae, Mendès France et Rauzy, nous donnons une démonstration élémentaire de la transcendance de la série formelle ainsi que d’autres séries formelles à coefficients dans un corps fini.
En 1976, Baum et Sweet ont donné le premier exemple d’une série formelle algébrique de degré sur ayant un développement en fraction continue dont les quotients partiels sont tous des polynômes en de degré ou . Cette série formelle est l’unique solution dans le corps de l’équation . En 1986, Mills et Robbins ont décrit un algorithme permettant de calculer le développement en fraction continue de la série de Baum et Sweet.Dans cet article, nous considérons les équations plus générales...
La théorie des corps finis a été faite il y a longtemps et ne comporte plus de problèmes ouverts. Toutefois, quand l'utilisateur cherche à déterminer effectivement un corps fini d'ordre donné, il rencontre des difficultés : après avoir eu beaucoup de mal pour obtenir un polynome irréductible unitaire de degré convenable, il constate souvent que les racines de ce polynome n'engendrent pas le groupe multiplicatif des éléments non nuls, d'où des complications pour obtenir la table multiplicative du...
1. Introduction. Dickson a conjecturé en 1909 dans [4] que toute forme binaire Q(X,Y) de degré pair 2r, r>1, à coefficients dans un corps fini de caractéristique différente de 2 telle que, pour tout (a,b) de distinct de (0,0), Q(a,b) soit un carré non nul de est un carré dès que q dépasse une certaine borne qui ne dépend que de r. Cette conjecture a été démontrée en 1947 par Carlitz dans [1] où il a montré que, si d est un entier ≥2, q une puissance d’un nombre premier impair telle que...
We examine iteration graphs of the squaring function on the rings when , for a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when and when and are symmetric when .
Explicit formulae for the number of triplets of consecutive squares in a Galois field are given.