Previous Page 2

Displaying 21 – 35 of 35

Showing per page

The R₂ measure for totally positive algebraic integers

V. Flammang (2016)

Colloquium Mathematicae

Let α be a totally positive algebraic integer of degree d, i.e., all of its conjugates α = α , . . . , α d are positive real numbers. We study the set ₂ of the quantities ( i = 1 d ( 1 + α ² i ) 1 / 2 ) 1 / d . We first show that √2 is the smallest point of ₂. Then, we prove that there exists a number l such that ₂ is dense in (l,∞). Finally, using the method of auxiliary functions, we find the six smallest points of ₂ in (√2,l). The polynomials involved in the auxiliary function are found by a recursive algorithm.

Topics in computational algebraic number theory

Karim Belabas (2004)

Journal de Théorie des Nombres de Bordeaux

We describe practical algorithms from computational algebraic number theory, with applications to class field theory. These include basic arithmetic, approximation and uniformizers, discrete logarithms and computation of class fields. All algorithms have been implemented in the Pari/Gp system.

Totally indefinite Euclidean quaternion fields

Jean-Paul Cerri, Jérôme Chaubert, Pierre Lezowski (2014)

Acta Arithmetica

We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish a complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.

Currently displaying 21 – 35 of 35

Previous Page 2