Loading [MathJax]/extensions/MathZoom.js
Displaying 81 –
100 of
151
If is a polynomial with coefficients in the field of complex numbers, of positive degree , then has at least one root a with the following property: if , where is the multiplicity of , then (such a root is said to be a "free" root of ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree ) with coefficients in a field of positive characteristic (Sudbery's Conjecture). In this paper it is shown that,...
We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product for distinct positive integers , and . In particular, we show that, under some natural conditions on rational functions , the number of distinct zeros and poles of the shifted products and grows linearly with if . We also obtain a version of this result for rational functions over a finite field.
We explicitly provide numbers , such that each irreducible factor of a polynomial with integer coefficients has a degree greater than or equal to and can have at most irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.
Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials such that . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then have no common divisor in of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several variables....
The notion of a closed polynomial over a field of zero characteristic was introduced by Nowicki and Nagata. In this paper we discuss possible ways to define an analog of this notion over fields of positive characteristic. We are mostly interested in conditions of maximality of the algebra generated by a polynomial in a respective family of rings. We also present a modification of the condition of integral closure and discuss a condition involving partial derivatives.
Let f(x) be a complex rational function. We study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we also derive some conditions for the case of complex polynomials.
Currently displaying 81 –
100 of
151