Displaying 81 – 100 of 151

Showing per page

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it is shown that,...

On the Győry-Sárközy-Stewart conjecture in function fields

Igor E. Shparlinski (2018)

Czechoslovak Mathematical Journal

We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product ( a b + 1 ) ( a c + 1 ) ( b c + 1 ) for distinct positive integers a , b and c . In particular, we show that, under some natural conditions on rational functions F , G , H ( X ) , the number of distinct zeros and poles of the shifted products F H + 1 and G H + 1 grows linearly with deg H if deg H max { deg F , deg G } . We also obtain a version of this result for rational functions over a finite field.

On the irreducible factors of a polynomial over a valued field

Anuj Jakhar (2024)

Czechoslovak Mathematical Journal

We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.

Polynomial Imaginary Decompositions for Finite Separable Extensions

Adam Grygiel (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u , . . . , u m - 1 K [ X , . . . , X m - 1 ] such that f ( j = 0 m - 1 ξ j X j ) = j = 0 m - 1 ξ j u j . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then u , . . . , u m - 1 have no common divisor in K [ X , . . . , X m - 1 ] of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several variables....

Positive characteristic analogs of closed polynomials

Piotr Jędrzejewicz (2011)

Open Mathematics

The notion of a closed polynomial over a field of zero characteristic was introduced by Nowicki and Nagata. In this paper we discuss possible ways to define an analog of this notion over fields of positive characteristic. We are mostly interested in conditions of maximality of the algebra generated by a polynomial in a respective family of rings. We also present a modification of the condition of integral closure and discuss a condition involving partial derivatives.

Prime rational functions

Omar Kihel, Jesse Larone (2015)

Acta Arithmetica

Let f(x) be a complex rational function. We study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we also derive some conditions for the case of complex polynomials.

Currently displaying 81 – 100 of 151