Correction to "On a functional equation arising from hyperbolic geometry", Volume 21 (1980), 113-116.
Let be the socle of C(X). It is shown that each prime ideal in is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential...
We give a description of possible sets of cycle lengths for distance-decreasing maps and isometries of the ring of n-adic integers.