Weak multiplication modules
In this paper we characterize weak multiplication modules.
In this paper we characterize weak multiplication modules.
Let R be the pullback, in the sense of Levy [J. Algebra 71 (1981)], of two local Dedekind domains. We classify all those indecomposable weak multiplication R-modules M with finite-dimensional top, that is, such that M/Rad(R)M is finite-dimensional over R/Rad(R). We also establish a connection between the weak multiplication modules and the pure-injective modules over such domains.
2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.By using classical invariant theory approach, formulas for computation of the Poincaré series of the kernel of linear locally nilpotent derivations are found.
2000 Mathematics Subject Classification: 13N15, 13A50, 13F20.An analogue of the symbolic method of classical invariant theory for a representation and manipulation of the elements of the kernel of Weitzenböck derivations is developed.
We show that the -signature of an -finite local ring of characteristic exists when is either the localization of an -graded ring at its irrelevant ideal or -Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the -signature in the cases where weak -regularity is known to be equivalent to strong -regularity.
In this paper, we study the class of rings in which every flat ideal is projective. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.
A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).
A lattice-ordered ring is called an OIRI-ring if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those -rings such that is contained in an -ring with an identity element that is a strong order unit for some nil -ideal of . In particular, if denotes the set of nilpotent elements of the -ring , then is an OIRI-ring if and only if is contained in an -ring with an identity element that is a strong order unit....
We give conditions such that the least degree solution of a Bézout identity is nonnegative on the interval [-1,1].
Sia a un intero algebrico con il polinomio minimale . Si danno condizioni necessarie e sufficienti affinché l'anello sia seminormale o -chiuso per mezzo di . Come applicazione, in particolare, si ottiene che se , , le condizioni sono espresse mediante il discriminante de .
Let be a completely regular Hausdorff space and, as usual, let denote the ring of real-valued continuous functions on . The lattice of -ideals of has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) precisely when is a -space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a -ideal if whenever two elements have the same annihilator and...