Page 1 Next

Displaying 1 – 20 of 257

Showing per page

S -depth on Z D -modules and local cohomology

Morteza Lotfi Parsa (2021)

Czechoslovak Mathematical Journal

Let R be a Noetherian ring, and I and J be two ideals of R . Let S be a Serre subcategory of the category of R -modules satisfying the condition C I and M be a Z D -module. As a generalization of the S - depth ( I , M ) and depth ( I , J , M ) , the S - depth of ( I , J ) on M is defined as S - depth ( I , J , M ) = inf { S - depth ( 𝔞 , M ) : 𝔞 W ˜ ( I , J ) } , and some properties of this concept are investigated. The relations between S - depth ( I , J , M ) and H I , J i ( M ) are studied, and it is proved that S - depth ( I , J , M ) = inf { i : H I , J i ( M ) S } , where S is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with...

S L 2 , the cubic and the quartic

Yannis Y. Papageorgiou (1998)

Annales de l'institut Fourier

We describe the branching rule from S p 4 to S L 2 , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.

s -pure submodules.

Crivei, Iuliu (2005)

International Journal of Mathematics and Mathematical Sciences

Sagbi bases of Cox–Nagata rings

Bernd Sturmfels, Zhiqiang Xu (2010)

Journal of the European Mathematical Society

We degenerate Cox–Nagata rings to toric algebras by means of sagbi bases induced by configurations over the rational function field. For del Pezzo surfaces, this degeneration implies the Batyrev–Popov conjecture that these rings are presented by ideals of quadrics. For the blow-up of projective n -space at n + 3 points, sagbi bases of Cox–Nagata rings establish a link between the Verlinde formula and phylogenetic algebraic geometry, and we use this to answer questions due to D’Cruz–Iarrobino and Buczyńska–Wiśniewski....

Segre-Veronese embeddings of P1 x P1 x P1 and their secant varieties.

Maria Virginia Catalisano, Anthony V. Geramita, Alessandro Gimigliano (2007)

Collectanea Mathematica

In this paper we compute the dimension of all the sth higher secant varieties of the Segre-Veronese embeddings Yd of the product P1 × P1 × P1 in the projective space PN via divisors of multidegree d = (a,b,c) (N = (a+1)(b+1)(c+1) - 1). We find that Yd has no deficient higher secant varieties, unless d = (2,2,2) and s = 7, or d = (2h,1,1) and s = 2h + 1, with defect 1 in both cases.

Sekiguchi-Suwa theory revisited

Ariane Mézard, Matthieu Romagny, Dajano Tossici (2014)

Journal de Théorie des Nombres de Bordeaux

We present an account of the construction by S. Sekiguchi and N. Suwa of a cyclic isogeny of affine smooth group schemes unifying the Kummer and Artin-Schreier-Witt isogenies. We complete the construction over an arbitrary base ring. We extend the statements of some results in a form adapted to a further investigation of the models of the group schemes of roots of unity.

Semi n -ideals of commutative rings

Ece Yetkin Çelikel, Hani A. Khashan (2022)

Czechoslovak Mathematical Journal

Let R be a commutative ring with identity. A proper ideal I is said to be an n -ideal of R if for a , b R , a b I and a 0 imply b I . We give a new generalization of the concept of n -ideals by defining a proper ideal I of R to be a semi n -ideal if whenever a R is such that a 2 I , then a 0 or a I . We give some examples of semi n -ideal and investigate semi n -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of...

Semifields and a theorem of Abhyankar

Vítězslav Kala (2017)

Commentationes Mathematicae Universitatis Carolinae

Abhyankar proved that every field of finite transcendence degree over or over a finite field is a homomorphic image of a subring of the ring of polynomials [ T 1 , , T n ] (for some n depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.

Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids

Víctor Blanco, Pedro A. García-Sánchez, Alfred Geroldinger (2010)

Actes des rencontres du CIRM

Arithmetical invariants—such as sets of lengths, catenary and tame degrees—describe the non-uniqueness of factorizations in atomic monoids.We study these arithmetical invariants by the monoid of relations and by presentations of the involved monoids. The abstract results will be applied to numerical monoids and to Krull monoids.

Currently displaying 1 – 20 of 257

Page 1 Next