-theory and stable algebra
Let be a commutative Noetherian ring. It is shown that the finitely generated -module with finite Gorenstein dimension is reflexive if and only if is reflexive for with , and for with . This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for we give a characterization of -Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown...
We give a short overview on the subject of canonical reduction of a pair of bilinear forms, each being symmetric or alternating, making use of the classification of pairs of linear mappings between vector spaces given by J. Dieudonné.