-поля
In this article, we formalize some basic facts of Z-module. In the first section, we discuss the rank of submodule of Z-module and its properties. Especially, we formally prove that the rank of any Z-module is equal to or more than that of its submodules, and vice versa, and that there exists a submodule with any given rank that satisfies the above condition. In the next section, we mention basic facts of linear transformations between two Z-modules. In this section, we define homomorphism between...
Let be a 1-connected closed manifold of dimension and be the space of free loops on . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of , . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between and the shifted homology . We also prove that the...
We describe the fields of rational constants of generic four-variable Lotka-Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.
Let X be an irreducible nonsingular complex algebraic set and let K be a compact subset of X. We study algebraic properties of the ring of rational functions on X without poles in K. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.
Let be a field of characteristic zero and G be a finite group of automorphisms of projective plane over . Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field is algebraically closed. In this paper we prove that is rational for an arbitrary field of characteristic zero.
The complete real spectrum of a commutative ring with is introduced. Points of the complete real spectrum are triples , where is a real prime of , is a real valuation of the field and is an ordering of the residue field of . is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on is considered. Special attention is paid to the case where the ring in question is a real holomorphy ring.