Page 1 Next

Displaying 1 – 20 of 67

Showing per page

The Bordalo order on a commutative ring

Melvin Henriksen, Frank A. Smith (1999)

Commentationes Mathematicae Universitatis Carolinae

If R is a commutative ring with identity and is defined by letting a b mean a b = a or a = b , then ( R , ) is a partially ordered ring. Necessary and sufficient conditions on R are given for ( R , ) to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings Z n of integers mod n for n 2 . In particular, if R is reduced, then ( R , ) is a lattice iff R is a weak Baer ring, and ( R , ) is a distributive lattice iff R is a Boolean ring, Z 3 , Z 4 , Z 2 [ x ] / x 2 Z 2 [ x ] , or a four element field.

The combinatorics of quiver representations

Harm Derksen, Jerzy Weyman (2011)

Annales de l’institut Fourier

We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically...

The First Isomorphism Theorem and Other Properties of Rings

Artur Korniłowicz, Christoph Schwarzweller (2014)

Formalized Mathematics

Different properties of rings and fields are discussed [12], [41] and [17]. We introduce ring homomorphisms, their kernels and images, and prove the First Isomorphism Theorem, namely that for a homomorphism f : R → S we have R/ker(f) ≅ Im(f). Then we define prime and irreducible elements and show that every principal ideal domain is factorial. Finally we show that polynomial rings over fields are Euclidean and hence also factorial

Currently displaying 1 – 20 of 67

Page 1 Next