On the biggest maximaly generated ideal as the conductor in the blowing up ring.
Let be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
Dato un insieme di punti nello spazio proiettivo, si costruisce un esplicito ideale canonico nel suo anello di coordinate . Si descrivono le componenti omogenee di e la struttura della mappa di moltiplicazione , dove . Tra le applicazioni ci sono varie caratterizzazioni di insiemi di punti coomologicamente uniformi, disuguaglianze nelle loro funzioni di Hilbert, il calcolo del primo modulo delle sizigie di in casi particolari, una generalizzazione della «trasformata di Gale» a trasformate...
Let p be a prime number, and let [...] Q¯ p be the completion of Q with respect to the pseudovaluation w which extends the p-adic valuation vp. In this paper our goal is to give a characterization of closed subfields of [...] Q¯ p , the completion of Q with respect w, i.e. the spectral extension of the p-adic valuation vp on Q.
Known results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.