On Finite Conductor Domains.
We shall prove that if is a finitely generated multiplication module and is a finitely generated ideal of , then there exists a distributive lattice such that with Zariski topology is homeomorphic to to Stone topology. Finally we shall give a characterization of finitely generated multiplication -modules such that is a finitely generated ideal of .
Let be the ring of real-valued continuous functions on a frame . The aim of this paper is to study the relation between minimality of ideals of and the set of all zero sets in determined by elements of . To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame , it is proved that the -ring is isomorphic to the -ring of all real continuous functions on the topological space . Finally, a one-one correspondence is...
We characterize prime submodules of for a principal ideal domain and investigate the primary decomposition of any submodule into primary submodules of