Previous Page 3

Displaying 41 – 52 of 52

Showing per page

Contraction par Frobenius de G -modules

Michel Gros, Masaharu Kaneda (2011)

Annales de l’institut Fourier

Soit G un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos 𝕜 de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de G ainsi que de la nature G -équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de G qui permet de « détordre » la structure des G -modules.

Convex-compact sets and Banach discs

I. Monterde, Vicente Montesinos (2009)

Czechoslovak Mathematical Journal

Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual E ' of a locally convex space E is the σ ( E ' , E ) -closure of the union of countably many σ ( E ' , E ) -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.

Correcteurs proportionnels-intégraux généralisés

Michel Fliess, Richard Marquez, Emmanuel Delaleau, Hebertt Sira-Ramírez (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Nous introduisons pour les systèmes linéaires constants les reconstructeurs intégraux et les correcteurs proportionnels-intégraux généralisés, qui permettent d’éviter le terme dérivé du PID classique et, plus généralement, les observateurs asymptotiques usuels. Notre approche, de nature essentiellement algébrique, fait appel à la théorie des modules et au calcul opérationnel de Mikusiński. Plusieurs exemples sont examinés.

Correcteurs proportionnels-intégraux généralisés

Michel Fliess, Richard Marquez, Emmanuel Delaleau, Hebertt Sira–Ramírez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

For constant linear systems we are introducing integral reconstructors and generalized proportional-integral controllers, which permit to bypass the derivative term in the classic PID controllers and more generally the usual asymptotic observers. Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusiński's setting. Several examples are discussed.

C(X) vs. C(X) modulo its socle

F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)

Colloquium Mathematicae

Let C F ( X ) be the socle of C(X). It is shown that each prime ideal in C ( X ) / C F ( X ) is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that d i m ( C ( X ) / C F ( X ) ) d i m C ( X ) , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential...

Cyclically valued rings and formal power series

Gérard Leloup (2007)

Annales mathématiques Blaise Pascal

Rings of formal power series k [ [ C ] ] with exponents in a cyclically ordered group C were defined in [2]. Now, there exists a “valuation” on k [ [ C ] ] : for every σ in k [ [ C ] ] and c in C , we let v ( c , σ ) be the first element of the support of σ which is greater than or equal to c . Structures with such a valuation can be called cyclically valued rings. Others examples of cyclically valued rings are obtained by “twisting” the multiplication in k [ [ C ] ] . We prove that a cyclically valued ring is a subring of a power series ring k [ [ C , θ ] ] with...

Currently displaying 41 – 52 of 52

Previous Page 3