Cohen-Macaulayness of modules of covariants.
Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.
Recently, motivated by Anderson, Dumitrescu’s -finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of -coherent rings, which is the -version of coherent rings. Let be a commutative ring with unity graded by an arbitrary commutative monoid , and a multiplicatively closed subset of nonzero homogeneous elements of . We define to be graded--coherent ring if every finitely generated homogeneous ideal of is -finitely presented. The purpose of this paper is to give the graded...
All rings considered in this paper are assumed to be commutative with identities. A ring is a -ring if every ideal of is a finite product of primary ideals. An almost -ring is a ring whose localization at every prime ideal is a -ring. In this paper, we first prove that the statements, is an almost -ring and is an almost -ring are equivalent for any ring . Then we prove that under the condition that every prime ideal of is an extension of a prime ideal of , the ring is a (an almost)...
Une somme amalgamée de schémas est décrite localement par un produit fibré d’anneaux. Ce texte donne un résultat global d’existence (§5.4) de schémas définis comme certaines sommes amalgamées et un procédé algébrique (§2.2) pour décrire les modules sur produits fibrés d’anneaux correspondants.
A ternary ring is an algebraic structure of type satisfying the identities and where, moreover, for any , , there exists a unique with . A congruence on is called normal if is a ternary ring again. We describe basic properties of the lattice of all normal congruences on and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring . Our focus is on homological properties of contracting endomorphisms of , e.g., the Frobenius endomorphism when contains a field of positive characteristic. For instance, in this case, when is -finite and is a semidualizing -complex, we prove that the following conditions are equivalent: (i) is a dualizing -complex; (ii) for some ; (iii) and is derived -reflexive...