Formules explicites intervenant dans la division euclidienne des polynômes à coefficients dans un anneau unitaire et applications diverses
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group , the cochain extension is not a Galois...
Let be a commutative ring and a multiplicative system of ideals. We say that is -Noetherian, if for each ideal of , there exist and a finitely generated ideal such that . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
Let be finite dimensional -algebra which is a complete intersection, i.e. whith a regular sequences . Steve Halperin conjectured that the connected component of the automorphism group of such an algebra is solvable. We prove this in case is in addition graded and generated by elements of degree 1.
The purpose of this paper is to present certain facts and results showing a way through which simplicial homotopy theory can be used in the study of Auslander-Goldman-Brauer groups of Azumaya algebras over commutative rings.