On the symmetric algebra of certain first syzygy modules
Let be a standard graded -algebra over a field . Then can be written as , where is a graded ideal of a polynomial ring . Assume that and is a strongly stable monomial ideal. We study the symmetric algebra of the first syzygy module of . When the minimal generators of are all of degree 2, the dimension of is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.