Generating ideals in local rings using elements of high degrees.
We characterize the postulation character of arithmetically Gorenstein curves in P4. We give conditions under which the curve can be realized in the form mH - K on some ACM surface. Finally, we complement a theorem by Watanabe by showing that any general arithmetically Gorenstein curve in P4 with arbitrary fixed postulation character can be obtained from a line by a series of ascending complete-intersection biliaisons.