Previous Page 4

Displaying 61 – 75 of 75

Showing per page

An addendum and corrigendum to "Almost free splitters" (Colloq. Math. 81 (1999), 193-221)

Rüdiger Göbel, Saharon Shelah (2001)

Colloquium Mathematicae

Let R be a subring of the rational numbers ℚ. We recall from [3] that an R-module G is a splitter if E x t ¹ R ( G , G ) = 0 . In this note we correct the statement of Main Theorem 1.5 in [3] and discuss the existence of non-free splitters of cardinality ℵ₁ under the negation of the special continuum hypothesis CH.

An algebraic framework for linear identification

Michel Fliess, Hebertt Sira-Ramírez (2003)

ESAIM: Control, Optimisation and Calculus of Variations

A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.

An algebraic framework for linear identification

Michel Fliess, Hebertt Sira–Ramírez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.

Associated primes and primal decomposition of modules over commutative rings

Ahmad Khojali, Reza Naghipour (2009)

Colloquium Mathematicae

Let R be a commutative ring and let M be an R-module. The aim of this paper is to establish an efficient decomposition of a proper submodule N of M as an intersection of primal submodules. We prove the existence of a canonical primal decomposition, N = N ( ) , where the intersection is taken over the isolated components N ( ) of N that are primal submodules having distinct and incomparable adjoint prime ideals . Using this decomposition, we prove that for ∈ Supp(M/N), the submodule N is an intersection of -primal...

Currently displaying 61 – 75 of 75

Previous Page 4