Amplitude inequalities for complexes
Let R be a subring of the rational numbers ℚ. We recall from [3] that an R-module G is a splitter if . In this note we correct the statement of Main Theorem 1.5 in [3] and discuss the existence of non-free splitters of cardinality ℵ₁ under the negation of the special continuum hypothesis CH.
A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.
A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.
Let R be a commutative ring and let M be an R-module. The aim of this paper is to establish an efficient decomposition of a proper submodule N of M as an intersection of primal submodules. We prove the existence of a canonical primal decomposition, , where the intersection is taken over the isolated components of N that are primal submodules having distinct and incomparable adjoint prime ideals . Using this decomposition, we prove that for ∈ Supp(M/N), the submodule N is an intersection of -primal...