Cross-Ratios and Projectivities of a Line.
Let be a commutative Noetherian ring and be a finitely generated -module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of , in some cases.
Maps between deformation functors of modules are given which generalise the maps induced by the Knörrer functors. These maps become isomorphisms after introducing certain equations in the target functor restricting the Zariski tangent space. Explicit examples are given on how the isomorphisms extend results about deformation theory and classification of MCM modules to higher dimensions.
Let (resp. ) be the simplicial complex and the facet ideal (resp. ). When , we give the exact formulas to compute the depth and Stanley depth of quotient rings and for all . When , we compute the depth and Stanley depth of quotient rings and , and give lower bounds for the depth and Stanley depth of quotient rings for all .
Let be an arbitrary commutative ring with identity, the general linear Lie algebra over , the diagonal subalgebra of . In case 2 is a unit of , all subalgebras of containing are determined and their derivations are given. In case 2 is not a unit partial results are given.