Displaying 341 – 360 of 557

Showing per page

On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence

Kosar Abolfath Beigi, Kamran Divaani-Aazar, Massoud Tousi (2022)

Czechoslovak Mathematical Journal

Let R be a local ring and C a semidualizing module of R . We investigate the behavior of certain classes of generalized Cohen-Macaulay R -modules under the Foxby equivalence between the Auslander and Bass classes with respect to C . In particular, we show that generalized Cohen-Macaulay R -modules are invariant under this equivalence and if M is a finitely generated R -module in the Auslander class with respect to C such that C R M is surjective Buchsbaum, then M is also surjective Buchsbaum.

On the Jacobian ideal of the binary discriminant.

Carlos D'Andrea, Jaydeep Chipalkatti (2007)

Collectanea Mathematica

Let Δ denote the discriminant of the generic binary d-ic. We show that for d ≥ 3, the Jacobian ideal of Δ is perfect of height 2. Moreover we describe its SL2-equivariant minimal resolution and the associated differential equations satisfied by Δ. A similar result is proved for the resultant of two forms of orders d, e whenever d ≥ e-1. If Φn denotes the locus of binary forms with total root multiplicity ≥ d-n, then we show that the ideal of Φn is also perfect, and we construct a covariant which...

On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani, Hajar Roshan-Shekalgourabi (2022)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is minimax for...

On the regularity and defect sequence of monomial and binomial ideals

Keivan Borna, Abolfazl Mohajer (2019)

Czechoslovak Mathematical Journal

When S is a polynomial ring or more generally a standard graded algebra over a field K , with homogeneous maximal ideal 𝔪 , it is known that for an ideal I of S , the regularity of powers of I becomes eventually a linear function, i.e., reg ( I m ) = d m + e for m 0 and some integers d , e . This motivates writing reg ( I m ) = d m + e m for every m 0 . The sequence e m , called the defect sequence of the ideal I , is the subject of much research and its nature is still widely unexplored. We know that e m is eventually constant. In this article, after...

On the structure of sequentially Cohen-Macaulay bigraded modules

Leila Parsaei Majd, Ahad Rahimi (2015)

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x m , y 1 , ... , y n ] be the standard bigraded polynomial ring over K . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” S -modules with respect to Q = ( y 1 , ... , y n ) . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to Q are considered.

Currently displaying 341 – 360 of 557