Displaying 81 – 100 of 557

Showing per page

Castelnuovo-Mumford regularity of products of ideals.

Aldo Conca, Jürgen Herzog (2003)

Collectanea Mathematica

The Castelnuovo-Mumford regularity reg(M) is one of the most important invariants of a finitely generated graded module M over a polynomial ring R. For instance, it measures the amount of computational resources that working with M requires. In general one knows that the regularity of a module can be doubly exponential in the degrees of the minimal generators and in the number of the variables. On the other hand, in many situations one has or one conjectures a much better behavior. One may ask,...

Categorification of the virtual braid groups

Anne-Laure Thiel (2011)

Annales mathématiques Blaise Pascal

We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.

Cofiniteness and finiteness of local cohomology modules over regular local rings

Jafar A'zami, Naser Pourreza (2017)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R ( R / I ) = Assh R ( I ) . It is shown that the R -module H I ht ( I ) ( R ) is I -cofinite if and only if cd ( I , R ) = ht ( I ) . Also we present a sufficient condition under which this condition the R -module H I i ( R ) is finitely generated if and only if it vanishes.

Cofiniteness of generalized local cohomology modules

Kamran Divaani-Aazar, Reza Sazeedeh (2004)

Colloquium Mathematicae

Let denote an ideal of a commutative Noetherian ring R, and M and N two finitely generated R-modules with pd M < ∞. It is shown that if either is principal, or R is complete local and is a prime ideal with dim R/ = 1, then the generalized local cohomology module H i ( M , N ) is -cofinite for all i ≥ 0. This provides an affirmative answer to a question proposed in [13].

Cofiniteness of torsion functors of cofinite modules

Reza Naghipour, Kamal Bahmanpour, Imaneh Khalili Gorji (2014)

Colloquium Mathematicae

Let R be a Noetherian ring and I an ideal of R. Let M be an I-cofinite and N a finitely generated R-module. It is shown that the R-modules T o r i R ( N , M ) are I-cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. This immediately implies that if I has dimension one (i.e., dim R/I = 1) then the R-modules T o r i R ( N , H I j ( M ) ) are I-cofinite for all i,j ≥ 0. Also, we prove that if R is local, then the R-modules T o r i R ( N , M ) are I-weakly cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3. Finally, it is shown that...

Cohomological dimension filtration and annihilators of top local cohomology modules

Ali Atazadeh, Monireh Sedghi, Reza Naghipour (2015)

Colloquium Mathematicae

Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration = M i i = 0 c , where c = cd(,M) and M i denotes the largest submodule of M such that c d ( , M i ) i . Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module H c ( M ) , namely A n n R ( H c ( M ) ) = A n n R ( M / M c - 1 ) . As a consequence, there exists an ideal of R such that A n n R ( H c ( M ) ) = A n n R ( M / H ( M ) ) . This generalizes the main results...

Currently displaying 81 – 100 of 557