Quotient Rings of Polynomial Rings.
James A. Huckaba, Ira J. Papick (1980)
Manuscripta mathematica
Michal Hrbek, Pavel Růžička (2017)
Czechoslovak Mathematical Journal
A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.
José Escoriza, Blas Torrecillas (1997)
Commentationes Mathematicae Universitatis Carolinae
We study the construction of new multiplication modules relative to a torsion theory . As a consequence, -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.
Peter Roquette (1976)
Journal für die reine und angewandte Mathematik
Martin J. Taylor (1990)
Journal de théorie des nombres de Bordeaux
Ali Jaballah (2010)
Czechoslovak Mathematical Journal
A ring extension is said to be FO if it has only finitely many intermediate rings. is said to be FC if each chain of distinct intermediate rings in this extension is finite. We establish several necessary and sufficient conditions for the ring extension to be FO or FC together with several other finiteness conditions on the set of intermediate rings. As a corollary we show that each integrally closed ring extension with finite length chains of intermediate rings is necessarily a normal pair...
Reinhard Knörr (1975)
Commentarii mathematici Helvetici
Friedemann Lucius (1998)
Manuscripta mathematica
R.W. Yeagy (1979)
Journal für die reine und angewandte Mathematik
Wolfram Jehne (1987)
Journal für die reine und angewandte Mathematik
Luigi Salce, Paolo Zanardo (1985)
Rendiconti del Seminario Matematico della Università di Padova
S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)
Discussiones Mathematicae - General Algebra and Applications
We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
Joachim Gräter (1989)
Monatshefte für Mathematik
G. Archinard (1984)
Colloquium Mathematicae
Henriksen, Melvin (1977)
Portugaliae mathematica
Rosario Strano (1974)
Rendiconti del Seminario Matematico della Università di Padova
Attilio Le Donne (1976)
Rendiconti del Seminario Matematico della Università di Padova
Victoria Powers, E. Becker (1996)
Journal für die reine und angewandte Mathematik
Ahmed JEBLI (1971/1972)
Seminaire de Théorie des Nombres de Bordeaux
A. Jebli (1972)
Publications mathématiques et informatique de Rennes