C-anneaux, E-anneaux et formule de la dimension
A commutative ring with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length . Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length .
We develop a recursive method for computing the -removed -orderings and -orderings of order the characteristic sequences associated to these and limits associated to these sequences for subsets of a Dedekind domain This method is applied to compute these objects for and .
Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual of a locally convex space is the -closure of the union of countably many -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.