The adcending chain condition for real ideas.
Let be a pure simplicial complex on the vertex set and its Stanley-Reisner ideal in the polynomial ring . We show that is a matroid (complete intersection) if and only if () is clean for all and this is equivalent to saying that (, respectively) is Cohen-Macaulay for all . By this result, we show that there exists a monomial ideal with (pretty) cleanness property while or is not (pretty) clean for all integer . If , we also prove that () is clean if and only if (,...
We describe the polynomials P ∈ ℂ[x,y] such that . As applications we give new examples of bad field generators and examples of families of polynomials with smooth and irreducible fibers.
We present some facts, observations and remarks concerning the problem of finiteness of the rings of constants for derivations of polynomial rings over a commutative ring k containing the field ℚ of rational numbers.
It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form , where are homogeneous polynomials of degree 3 with real coefficients (or ), j = 1,...,n and H’(x) is a nilpotent matrix for each . We give another proof of Yu’s theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case , where . Note that the above inequality is not true when the coefficients of...
For each squarefree monomial ideal , we associate a simple finite graph by using the first linear syzygies of . The nodes of are the generators of , and two vertices and are adjacent if there exist variables such that . In the cases, where is a cycle or a tree, we show that has a linear resolution if and only if has linear quotients and if and only if is variable-decomposable. In addition, with the same assumption on , we characterize all squarefree monomial ideals with a...