Page 1

Displaying 1 – 4 of 4

Showing per page

Quelques remarques sur les familles canoniques de polynômes générateurs pour l'exponentielle

Michel Langevin (1997)

Annales de l'institut Fourier

Soit K un corps commutatif. Chercher une série formelle S ( X , T ) K [ [ X , T ] ] vérifiant S ( X + Y , T ) / S ( X , T ) K [ [ Y , T ] ] conduit naturellement à étudier l’application U ( T ) ( U ( T ) ) X , U ( T ) étant une unité de l’algèbre K [ [ T ] ] , et à ramener les solutions à la forme S ( X , T ) = n 0 H n ( X ) T n , ( H n ( X ) ) étant une suite de K [ X ] vérifiant les “identités multinomiales” : ( μ ) H n ( X 1 + ... + X k ) = α 1 + ... + α k = n H α 1 ( X 1 ) ... H α k ( X k ) ( n , k 0 ) . Après mise à l’écart par des lemmes combinatoires du cas caract ( K ) > 0 (les solutions sont triviales), on caractérise de plusieurs manières les solutions. On peut les faire coïncider avec l’ensemble NW des suites de polynômes (ou séries génératrices...

Currently displaying 1 – 4 of 4

Page 1