Page 1

Displaying 1 – 9 of 9

Showing per page

Degree estimate for subalgebras generated by two elements

Leonid Makar-Limanov, Jie-Tai Yu (2008)

Journal of the European Mathematical Society

We develop a new combinatorial method to deal with a degree estimate for subalgebras generated by two elements in different environments. We obtain a lower bound for the degree of the elements in two-generated subalgebras of a free associative algebra over a field of zero characteristic. We also reproduce a somewhat refined degree estimate of Shestakov and Umirbaev for the polynomial algebra, which plays an essential role in the recent celebrated solution of the Nagata conjecture and the strong...

Depth and Stanley depth of the facet ideals of some classes of simplicial complexes

Xiaoqi Wei, Yan Gu (2017)

Czechoslovak Mathematical Journal

Let Δ n , d (resp. Δ n , d ' ) be the simplicial complex and the facet ideal I n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - d + 1 x n ) (resp. J n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - 2 d + 2 k + 1 x n - d + 2 k , x n - d + k + 1 x n x 1 x k ) ). When d 2 k + 1 , we give the exact formulas to compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d t for all t 1 . When d = 2 k , we compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d , and give lower bounds for the depth and Stanley depth of quotient rings S / I n , d t for all t 1 .

Determining Integer-Valued Polynomials From Their Image

Vadim Ponomarenko (2010)

Actes des rencontres du CIRM

This note summarizes a presentation made at the Third International Meeting on Integer Valued Polynomials and Problems in Commutative Algebra. All the work behind it is joint with Scott T. Chapman, and will appear in [2]. Let Int ( ) represent the ring of polynomials with rational coefficients which are integer-valued at integers. We determine criteria for two such polynomials to have the same image set on .

Currently displaying 1 – 9 of 9

Page 1