Simple birational extensions of two dimensional affine rational domains
Page 1 Next
Peter Russell (1976)
Compositio Mathematica
Peter Russell (1979)
Compositio Mathematica
Michel Hickel (2001)
Annales de l’institut Fourier
Soient un corps commutatif et un idéal de l’anneau des polynômes (éventuellement ). Nous prouvons une conjecture de C. Berenstein - A. Yger qui affirme que pour tout polynôme , élément de la clôture intégrale de l’idéal , on a une représentationoù .
Jorgen Cherly, Luis Gallardo, Leonid Vaserstein, Ethel Wheland (1998)
Publicacions Matemàtiques
We are concerned with solving polynomial equations over rings. More precisely, given a commutative domain A with 1 and a polynomial equation antn + ...+ a0 = 0 with coefficients ai in A, our problem is to find its roots in A.We show that when A = B[x] is a polynomial ring, our problem can be reduced to solving a finite sequence of polynomial equations over B. As an application of this reduction, we obtain a finite algorithm for solving a polynomial equation over A when A is F[x1, ..., xN] or F(x1,...
Eric Emtander, Fatemeh Mohammadi, Somayeh Moradi (2011)
Czechoslovak Mathematical Journal
We consider Stanley-Reisner rings where is the edge ideal associated to some particular classes of hypergraphs. For instance, we consider hypergraphs that are natural generalizations of graphs that are lines and cycles, and for these we compute the Betti numbers. We also generalize some known results about chordal graphs and study a weak form of shellability.
Antonio G. Rodicio (1987)
Manuscripta mathematica
Mitsuhiro Miyazaki (1991)
Manuscripta mathematica
Satya Mandal (1985)
Mathematische Zeitschrift
Ayache, Ahmed (1993)
Portugaliae mathematica
Ladislav Skula (2009)
Czechoslovak Mathematical Journal
On the ring of polynomials in n variables over a field special isomorphisms ’s of into are defined which preserve the greatest common divisor of two polynomials. The ring is extended to the ring and the ring of generalized polynomials in such a way that the exponents of the variables are non-negative rational numbers and rational numbers, respectively. The isomorphisms ’s are extended to automorphisms ’s of the ring . Using the property that the isomorphisms ’s preserve GCD it...
S.M. Bhatwadekar, A. Roy (1982)
Inventiones mathematicae
Sarfraz Ahmad (2011)
Czechoslovak Mathematical Journal
We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal is a CM Stanley ideal, then is a Stanley ideal as well, where is the polarization of .
Bernd Sturmfels, Neil White (1990)
Mathematica Scandinavica
Ken McKenna, Lou Van den Dries (1990)
Manuscripta mathematica
Maria Grazia Marinari (2001)
Bollettino dell'Unione Matematica Italiana
In this note we study some algebraic properties of Borel Ideals in the ring of polynomials over an effective field of characteristic zero by using a suitable partial order relation defined on the set of terms of each degree. In particular, in the three variable case, we characterize all the 0-dimensional Borel ideals corresponding to an admissible -vector and their minimal free resolutions.
S. Baldassarri-Ghezzo, S. Chiaruttini (1982)
Rendiconti del Seminario Matematico della Università di Padova
Ted Chinburg, Melvin Henriksen (1976)
Acta Arithmetica
Jacek Bochnak (1977)
Commentarii mathematici Helvetici
Jean-Jacques Risler (1975)
Annales scientifiques de l'École Normale Supérieure
Pierrette Cassou-Noguès, Ha Huy Vui (1995)
Annales Polonici Mathematici
Résumé. Soit f un polynôme à deux indéterminées. On appelle nombre de Łojasiewicz à l'infini de f le nombre de Łojasiewicz à l'infini de son application gradient. Dans cet article nous montrons tout d'abord que l'on peut calculer le nombre de Łojasiewicz d'un polynôme à partir des diagrammes de Eisenbud et Neumann de toutes les courbes f(x,y) = t. Ensuite nous montrons que l'on peut définir un nombre de Łojasiewicz intrinsèque en prenant le maximum des nombres de Łojasiewicz de f ∘ ϕ si f est bon...
Page 1 Next