O čtrnáctém Hilbertově problému
Let be an integral domain with the quotient field , an indeterminate over and an element of . The Bhargava ring over at is defined to be . In fact, is a subring of the ring of integer-valued polynomials over . In this paper, we aim to investigate the behavior of under localization. In particular, we prove that behaves well under localization at prime ideals of , when is a locally finite intersection of localizations. We also attempt a classification of integral domains ...
In this paper we study commutative rings whose prime ideals are direct sums of cyclic modules. In the case is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring , the following statements are equivalent: (1) Every prime ideal of is a direct sum of cyclic -modules; (2) where is an index set and is a principal ideal ring for each ; (3) Every prime ideal of is a direct sum of at most...